Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38652552

The brain networks for the first (L1) and second (L2) languages are dynamically formed in the bilingual brain. This study delves into the neural mechanisms associated with logographic-logographic bilingualism, where both languages employ visually complex and conceptually rich logographic scripts. Using functional Magnetic Resonance Imaging, we examined the brain activity of Chinese-Japanese bilinguals and Japanese-Chinese bilinguals as they engaged in rhyming tasks with Chinese characters and Japanese Kanji. Results showed that Japanese-Chinese bilinguals processed both languages using common brain areas, demonstrating an assimilation pattern, whereas Chinese-Japanese bilinguals recruited additional neural regions in the left lateral prefrontal cortex for processing Japanese Kanji, reflecting their accommodation to the higher phonological complexity of L2. In addition, Japanese speakers relied more on the phonological processing route, while Chinese speakers favored visual form analysis for both languages, indicating differing neural strategy preferences between the 2 bilingual groups. Moreover, multivariate pattern analysis demonstrated that, despite the considerable neural overlap, each bilingual group formed distinguishable neural representations for each language. These findings highlight the brain's capacity for neural adaptability and specificity when processing complex logographic languages, enriching our understanding of the neural underpinnings supporting bilingual language processing.


Brain Mapping , Brain , Magnetic Resonance Imaging , Multilingualism , Humans , Male , Female , Young Adult , Brain/physiology , Brain/diagnostic imaging , Adult , Phonetics , Reading , Language , Japan
2.
Epilepsy Behav ; 135: 108819, 2022 10.
Article En | MEDLINE | ID: mdl-35835716

Previous studies have demonstrated that language impairments are frequently observed in patients with benign epilepsy with centrotemporal spikes (BECTS). However, how BECTS affects language processing in the Chinese population remains unclear. With the use of functional magnetic resonance imaging (fMRI) in an overt picture-naming task, the present study examined functional connectivity in 27 children with BECTS and 26 healthy controls. The results indicated that children with BECTS showed altered functional connectivity associated with speech production between the left precuneus and the right cerebellum, between the right precuneus and the bilateral thalamus and the left superior temporal gyrus, between the right cuneus and the right postcentral gyrus and the right inferior parietal lobule, and between the right cerebellum and right middle frontal gyrus. Collectively, the findings in this study demonstrate the abnormal functional connectivity basis of speech production in Chinese children with BECTS, providing clues to understanding the brain mechanisms of language-related network in patients with BECTS.


Epilepsy, Rolandic , Brain Mapping/methods , Child , China , Epilepsy, Rolandic/complications , Epilepsy, Rolandic/diagnostic imaging , Humans , Language , Magnetic Resonance Imaging/methods , Speech
3.
Stud Health Technol Inform ; 290: 1030-1031, 2022 Jun 06.
Article En | MEDLINE | ID: mdl-35673190

A web-based survey was conducted among 238 Chinse medical students to examine their acceptance and use of e-Health services. Chinese medical students are found to have limited experience and low satisfaction with current e-Health services, which indicates an urgent need to improve e-Health practice training based on a consumer-centered model of health care.


Students, Medical , China , Health Services , Humans , Surveys and Questionnaires
4.
Brain Struct Funct ; 226(7): 2295-2306, 2021 Sep.
Article En | MEDLINE | ID: mdl-34228220

Metacognition is the ability to introspect and control ongoing cognitive processes. Despite the extensive investigation of the brain architectures supporting metacognition for perception and memory, little is known about the neural basis of metacognitive capacity for motor function, a vital aspect of human behavior. Here, using functional and structural magnetic resonance imaging (MRI), we examined the brain substrates underlying self-awareness of handwriting, a highly practiced visuomotor skill. Results showed that experienced adult writers generally overestimated their handwriting quality, and such overestimation was more pronounced in men relative to women. Individual variations in self-awareness of handwriting quality were positively correlated with gray matter volume in the left fusiform gyrus, right middle frontal gyrus and right precuneus. The left fusiform gyrus and right middle frontal gyrus are thought to represent domain-specific brain mechanisms for handwriting self-awareness, while the right precuneus that has been reported in other domains likely represents a domain-general brain mechanism for metacognition. Furthermore, the activity of these structurally related regions in a handwriting task was not correlated with self-awareness of handwriting, suggesting the correlation with metacognition was independent of task performance. Together, this study reveals that metacognition for practiced motor skills relies on both domain-general and domain-specific brain systems, extending our understanding about the neural basis of human metacognition.


Metacognition , Brain/diagnostic imaging , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Perception
5.
J Air Waste Manag Assoc ; 71(12): 1492-1501, 2021 12.
Article En | MEDLINE | ID: mdl-34061725

Recycling of valuable metals from spent catalysts in a green way is gaining extensive interest for economic and environment reasons. In this study, we developed novel hydrophobic deep eutectic solvents to extract Mo from spent catalysts. The hydrophobic DESs have been designed and synthesized by mixing one molar of the quaternary ammonium salt and two molars of various saturated fatty acids with different carbon chain lengths. The extraction ability and extraction mechanism of these DESs were studied, some factors influencing the extraction efficiency, including the structure of hydrogen bond acceptors and hydrogen bond donors, initial aqueous pH, reaction time and temperature, phase ratios were investigated. It is found that the synthesized hydrophobic DESs exhibit excellent extraction performance toward Mo, where the Mo distribution ratio is more than 2200 in the presence of other metals, corresponding to an extraction efficiency of 99% at optimal reaction conditions. This work reveals a distinct class of materials, guiding an effective and green way for spent catalyst treatment.Implications: Novel hydrophobic deep eutectic solvents have been developed to extract Mo from spent catalysts, the synthesized hydrophobic DESs possess several advantages, such as green, low price, low toxicity, and biodegradability. It exhibits excellent extraction performance under an optimized extraction condition. This work reveals a distinct class of materials, guiding a promising way for green and economical utilization of spent catalysts.


Quaternary Ammonium Compounds , Water , Deep Eutectic Solvents , Hydrophobic and Hydrophilic Interactions , Solvents
6.
Front Hum Neurosci ; 15: 739333, 2021.
Article En | MEDLINE | ID: mdl-34975431

Research on light modulation has typically examined the wavelength, intensity, and exposure time of light, and measured rhythm, sleep, and cognitive ability to evaluate the regulatory effects of light variables on physiological and cognitive functions. Although the frequency of light is one of the main dimensions of light, few studies have attempted to manipulate it to test the effect on brain activation and performance. Recently, 40-Hz light stimulation has been proven to significantly alleviate deficits in gamma oscillation of the hippocampus caused by Alzheimer's disease. Although this oscillation is one of the key functional characteristics of performing memory tasks in healthy people, there is no evidence that 40-Hz blue light exposure can effectively regulate brain activities related to complex cognitive tasks. In the current study, we examined the difference in the effects of 40-Hz light or 0-Hz light exposure on brain activation and functional connectivity during a recognition memory task. Through joint augmentation of visual area activation, 40-Hz light enhanced brain areas mostly in the limbic system that are related to memory, such as the hippocampus and thalamus. Conversely, 0-Hz light enhanced brain areas mostly in the prefrontal cortex. Additionally, functional connection analysis, with the hippocampus as the seed point, showed that 40-Hz light enhanced connection with the superior parietal lobe and reduced the connection with the default network. These results indicate that light at a frequency of 40 Hz can change the activity and functional connection of memory-related core brain areas. They also indicate that in the use of light to regulate cognitive functions, its frequency characteristics merit attention.

7.
Sci Rep ; 10(1): 11250, 2020 07 09.
Article En | MEDLINE | ID: mdl-32647114

The aim of this respective study was to assess the graft signal/noise quotient (SNQ) value and associated factors based on magnetic resonance imaging (MRI) after lateral meniscal allograft transplantation (LMAT). Patients with LMAT were included. The SNQ, width of the anterior horn (WAH), width of the midbody (WMB), width of the posterior horn (WPH) of each lateral meniscus, coronal graft extrusion (CGE), the anterior cartilage meniscus distance (ACMD) and the posterior cartilage meniscus distance (PCMD) were measured using MRI and tested by multivariate stepwise regression analysis. The relative percentage of extrusion (PRE) was calculated. Seventy-one male patients were examined, and 7 patients were lost to follow-up. The SNQ of the meniscus increased from immediately after surgery to 6 months postoperatively, decreased from 6 to 12 months, increased from 12 to 24 months, and increased from 24 to 36 months. The mean SNQ had a significant negative association with the WPH and CGE at 6 months (p < 0.05), the WPH at 1 year (p < 0.05), the PRE of CGE (CPRE) at 2 years (p < 0.05), and the PCMD, CPRE, and PRE of the PCMD (PPRE) at 3 years (p < 0.01) postoperatively. Multivariate stepwise regression analysis showed that the WPH at 6 months, WPH at 1 year, WMD and PCMD at 2 years, and WMD, ACMD and CGE at 3 years were significant independent factors correlated with the mean SNQ of grafts in different periods. Maturation of meniscal grafts fluctuated with time. The maturation process occupied the main role before 1 year postoperatively, but after the maturation process, tearing of the meniscal allograft played the leading role. Changes in an allograft's location had an obvious association with the SNQ. The WPH influenced the graft SNQ value at 6 months and 1 year postoperatively, but after the maturation process, the WMB and graft extrusion played the same roles.


Cartilage/diagnostic imaging , Magnetic Resonance Imaging , Menisci, Tibial/transplantation , Adolescent , Adult , Allografts , Cartilage/surgery , Humans , Knee Joint/pathology , Knee Joint/surgery , Male , Menisci, Tibial/diagnostic imaging , Menisci, Tibial/surgery , Middle Aged , Multivariate Analysis , Observer Variation , Postoperative Period , Regression Analysis , Reproducibility of Results , Retrospective Studies , Transplantation, Homologous , Young Adult
8.
J Air Waste Manag Assoc ; 70(10): 971-979, 2020 10.
Article En | MEDLINE | ID: mdl-32633619

Disposal of spent catalyst in an economical and green way has become a great concern for industrial production. We developed a process including acid leaching, solvent extraction and stripping in order to recycle spent catalyst. In this study, we conducted selective recovery of molybdenum through focus on finding an optimized extraction and stripping process by comparing different extractants and stripping agents. To separate molybdenum from other metals efficiently and figure out the mechanism of extraction process, the five different extractants of methyl trioctyl ammonium chloride, tri-n-octylamine, tris (2-ethylhexyl) amine, bis (2-ethylhexyl) phosphate, and tributyl phosphate with different functional groups were examined; the extraction ability and extraction mechanism of these five extractants were systematically studied under the same system for the first time. It was found that more than 98% of the molybdenum could be extracted with an organic phase consisting of tri-n-octylamine or methyl trioctyl ammonium chloride under the optimal conditions. The result indicated that the tri-n-octylamine and methyl trioctyl ammonium chloride possess excellent molybdenum extraction ability, the extraction capacity of the rest extractants was in the order of bis (2-ethylhexyl) phosphate > tris (2-ethylhexyl) amine > tributyl phosphate. In the stripping process, NH4OH, NaOH, and H2SO4 were chosen as stripping agent to strip the molybdenum from the loaded tri-n-octylamine organic phase. The stripping ability of the three studied stripping agents was in the order NaOH > NH4OH > H2SO4. The Fourier transform infrared (FTIR) spectra showed that the structure of the tri-n-octylamine organic phase was stable during the extraction and stripping process. Results showed that molybdenum could be highly and efficiently recovered by optimized extraction and stripping process. Implications: A series of different extractants and stripping agent have been systematically studied in order to compare their extraction and stripping ability under the same system. Based on the obtained results, an optimized extraction and stripping process was proposed to recycle molybdenum from spent catalyst efficiently. It is possible to dispose spent catalysts in an economic and environmental way by this developed metal recovery process.


Molybdenum/chemistry , Recycling/methods , Amines/chemistry , Ammonium Hydroxide/chemistry , Catalysis , Organophosphates/chemistry , Quaternary Ammonium Compounds/chemistry , Sodium Hydroxide/chemistry , Sulfuric Acids/chemistry
9.
Front Physiol ; 11: 294, 2020.
Article En | MEDLINE | ID: mdl-32390857

Alzheimer's disease (AD) patients often exhibit perturbed circadian rhythm with fragmented sleep before disease onset. This study was designed to evaluate the effect of a 40-Hz light flicker on circadian rhythm in an AD mouse model (APP/PS1). Locomotor rhythms recordings were conducted to examine the circadian clock rhythm in APP/PS1 mice. Molecular biology analyses, including western blot and real-time qPCR assays, were conducted to assess the changes in circadian locomotor output cycles kaput (CLOCK), brain and muscle arnt-like protein-1 (BMAL1), and period 2 (PER2). In addition to determining the direct effect of a 40-Hz light flicker on hypothalamic central clock, whole-cell voltage-clamp electrophysiology was employed to record individual neurons of suprachiasmatic nucleus (SCN) sections. The results reported herein demonstrate that a 40-Hz light flicker relieves circadian rhythm disorders in APP/PS1 mice and returns the expression levels of key players in the central circadian clock, including Clock, Bmal1, and Per2, to baseline. Moreover, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in SCN neurons is significantly lower in APP/PS1 mice than in the control, and the amplitude of sIPSCs is decreased. Exposure to a 40-Hz light flicker significantly increases the sIPSC frequency in SCN neurons of APP/PS1 mice, with little effect on the amplitude. However, the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) are both unaffected by a 40-Hz light flicker. The data suggest that a 40-Hz light flicker can ameliorate AD-associated circadian rhythm disorders, presenting a new type of therapeutic treatment for rhythm disorders caused by AD.

...